Spectroscopy of Molecular Oxygen in 1 he At mosphere of Venus

F P Mills (Caltech, Pasadena, CA 91125; ph. 818-395-6447; e-mail: fpm@mercu1.gps.caltech.edu); D Crisp (JPL);; S G Ryan (AAO);

Current Venusian atmospheric chemistry models [e.g., Sze & McElroy, Planet. Space Sci. (197.5), Winick & Stewart, JGR (19X0). Yung & DeMore, Icarus (1982), Krasnopol'sky & Parshey, Venus (1983)] have identified chemical cycles that use II, Cl, and S compounds to catalyze the reformation of CO_2 from its photodissociation products (CO and O_2). These models predict that O_2 should be a minor, but detectable, constituent of the Venus atmosphere (column mixing ratio in the mesosphere of ~ 1.5 - 3.5×10 - 6 from the Yung & DeMore model). In addition, repeated observations since O_2 airglow in the IR atmospheric bands near O_2 is produced in the Venus nightside mesosphere at a rate comparable to that at which O_2 is photodissociated on O_2 he dayside [Connes et al, Ap. J. (1979), Crisp et al, JGR (1996)]. Nevertheless, all attempts to measure O_2 abundances in the mesosphere have been unsuccessful. The current upper limit is O_2 and O_2 and O_3 is a photodiscociated by the current upper limit is O_3 and O_4 are the mesosphere have been unsuccessful.

Speculation has suggested that O_2 might have been depressed at the time of Trauger and Lunine's observations since SO_2 abundances declined by a factor of 8 from 1979-1988 [Esposito et al., JGR (1988), Na et al., JGR (1990)] and have since declined further [Na et al., DPS Conference (1995)]. If this were correct then O_2 might now be detectable.

We used the AAT's UHRF [Diego et al, Mon. Not. R. Ast. Soc. (1995)] to attempt to detect O_2 in the Venus mesosphere by observing the 763.6325 and 763.2165 nm lines at spectral resolving power $(\lambda/\Delta\lambda)$ of 600,000 using the 1.5" square image slicer [Diego, App. Opt. (1993)].

Our preliminary analysis finds no detectable absorption from 0_2 in the Venus mesosphere. Analysis of one morning's spectra gives a maximum line depth $(\Delta l/l)$ of ≤ 0 . 00S (equivalent widt It of ~ 0 . I mÅ). Scaling from Trauger and Lunine's calculations gives a column mixing ratio of \leq 3 \times 10⁻⁶, indicating the smaller SO₂ abundance may not have significantly affected the abundance of O₂ in the Venus mesosphere.

American Geophysical Union Abstract Form

Reference # 0000 Session 0.00

- 1. 1996 WPGM Meeting
- 2. No member or sponsor 11).
- 3.(a)Franklin 1'. Mills Planetary Science 170-25Caltech Pasadena, (A 911'2.5 USA FPM@mercu1.gps.caltech.edu
 - (b) 818-395-6447
 - ((') 818-585-1917
- 4. SP
- 5. (i,) S] 'lo
 - (1)) 5405, 5464,
 - ((")
- 6.1'
- 7 0% published elsewhere
- 8. (Trange \$50 to card, expires
- 9. C
- 10. Please schedule as poster.
 Presenting author is **also a**convenor **of a** parallel session.
- 1 L. Regular author